Quadratic program¶
A quadratic program is an optimization problem with a quadratic objective and affine equality and inequality constraints. A common standard form is the following:
Here \(P \in \mathcal{S}^{n}_+\), \(q \in \mathcal{R}^n\), \(G \in \mathcal{R}^{m \times n}\), \(h \in \mathcal{R}^m\), \(A \in \mathcal{R}^{p \times n}\), and \(b \in \mathcal{R}^p\) are problem data and \(x \in \mathcal{R}^{n}\) is the optimization variable. The inequality constraint \(Gx \leq h\) is elementwise.
A simple example of a quadratic program arises in finance. Suppose we have \(n\) different stocks, an estimate \(r \in \mathcal{R}^n\) of the expected return on each stock, and an estimate \(\Sigma \in \mathcal{S}^{n}_+\) of the covariance of the returns. Then we solve the optimization problem
to find a portfolio allocation \(x \in \mathcal{R}^n_+\) that optimally balances expected return and variance of return.
When we solve a quadratic program, in addition to a solution \(x^\star\), we obtain a dual solution \(\lambda^\star\) corresponding to the inequality constraints. A positive entry \(\lambda^\star_i\) indicates that the constraint \(g_i^Tx \leq h_i\) holds with equality for \(x^\star\) and suggests that changing \(h_i\) would change the optimal value.
Example¶
In the following code, we solve a quadratic program with CVXPY.
# Import packages.
import cvxpy as cp
import numpy as np
# Generate a random non-trivial quadratic program.
m = 15
n = 10
p = 5
np.random.seed(1)
P = np.random.randn(n, n)
P = P.T @ P
q = np.random.randn(n)
G = np.random.randn(m, n)
h = G @ np.random.randn(n)
A = np.random.randn(p, n)
b = np.random.randn(p)
# Define and solve the CVXPY problem.
x = cp.Variable(n)
prob = cp.Problem(cp.Minimize((1/2)*cp.quad_form(x, P) + q.T @ x),
[G @ x <= h,
A @ x == b])
prob.solve()
# Print result.
print("\nThe optimal value is", prob.value)
print("A solution x is")
print(x.value)
print("A dual solution corresponding to the inequality constraints is")
print(prob.constraints[0].dual_value)
The optimal value is 86.89141585569918
A solution x is
[-1.68244521 0.29769913 -2.38772183 -2.79986015 1.18270433 -0.20911897
-4.50993526 3.76683701 -0.45770675 -3.78589638]
A dual solution corresponding to the inequality constraints is
[ 0. 0. 0. 0. 0. 10.45538054
0. 0. 0. 39.67365045 0. 0.
0. 20.79927156 6.54115873]