Functions

The table below lists all the atomic functions available in CVXPY.

Curvature
DCP Property

Atoms table

Function

Meaning

Domain

DCP Properties

Curvature 

dotsort(X,W)

constant \(W \in \mathbf{R}^{o \times p}\)

\(\text{dot product of}\) \(\operatorname{sort}\operatorname{vec}(X) \text{ and}\) \(\operatorname{sort}\operatorname{vec}(W)\)

\(X \in \mathbf{R}^{m \times n}\)

sign depends on \(X\), \(W\)

incr for \(\min(W) \geq 0\)

convex convex

geo_mean(x)

geo_mean(x, p)

\(p \in \mathbf{R}^n_{+}\)

\(p \neq 0\)

\(x_1^{1/n} \cdots x_n^{1/n}\)

\(x \in \mathbf{R}^n_{+}\)

positive positive

incr incr.

concave concave

harmonic_mean(x)

\(\frac{n}{\frac{1}{x_1} + \cdots + \frac{1}{x_n}}\)

\(x \in \mathbf{R}^n_{+}\)

positive positive

incr incr.

concave concave

inv_prod(x)

\((x_1\cdots x_n)^{-1}\)

\(x \in \mathbf{R}^n_+\)

positive positive

decr decr.

convex convex

lambda_max(X)

\(\lambda_{\max}(X)\)

\(X \in \mathbf{S}^n\)

unknown unknown sign

convex convex

lambda_min(X)

\(\lambda_{\min}(X)\)

\(X \in \mathbf{S}^n\)

unknown unknown sign

concave concave

lambda_sum_largest(X,k)

\(k = 1,\ldots, n\)

\(\text{sum of $k$ largest}\) \(\text{eigenvalues of $X$}\)

\(X \in\mathbf{S}^{n}\)

unknown unknown sign

convex convex

lambda_sum_smallest(X,k)

\(k = 1,\ldots, n\)

\(\text{sum of $k$ smallest}\) \(\text{eigenvalues of $X$}\)

\(X \in\mathbf{S}^{n}\)

unknown unknown sign

concave concave

log_det(X)

\(\log \left(\det (X)\right)\)

\(X \in \mathbf{S}^n_+\)

unknown unknown sign

concave concave

log_sum_exp(X)

\(\log \left(\sum_{ij}e^{X_{ij}}\right)\)

\(X \in\mathbf{R}^{m \times n}\)

unknown unknown sign

incr incr.

convex convex

matrix_frac(x, P)

\(x^T P^{-1} x\)

\(x \in \mathbf{R}^n\)

positive positive

convex convex

max(X)

\(\max_{ij}\left\{ X_{ij}\right\}\)

\(X \in\mathbf{R}^{m \times n}\)

same sign as X

incr incr.

convex convex

mean(X)

\(\frac{1}{m n}\sum_{ij}\left\{ X_{ij}\right\}\)

\(X \in\mathbf{R}^{m \times n}\)

same sign as X

incr incr.

affine affine

min(X)

\(\min_{ij}\left\{ X_{ij}\right\}\)

\(X \in\mathbf{R}^{m \times n}\)

same sign as X

incr incr.

concave concave

mixed_norm(X, p, q)

\(\left(\sum_k\left(\sum_l\lvert x_{k,l}\rvert^p\right)^{q/p}\right)^{1/q}\)

\(X \in\mathbf{R}^{n \times n}\)

positive positive

convex convex

norm(x)

norm(x, 2)

\(\sqrt{\sum_{i} \lvert x_{i} \rvert^2 }\)

\(X \in\mathbf{R}^{n}\)

positive positive

incr for \(x_{i} \geq 0\)

convex convex

norm(x, 1)

\(\sum_{i}\lvert x_{i} \rvert\)

\(x \in\mathbf{R}^{n}\)

positive positive

incr for \(x_{i} \geq 0\)

convex convex

norm(x, “inf”)

\(\max_{i} \{\lvert x_{i} \rvert\}\)

\(x \in\mathbf{R}^{n}\)

positive positive

incr for \(x_{i} \geq 0\)

convex convex

norm(X, “fro”)

\(\sqrt{\sum_{ij}X_{ij}^2 }\)

\(X \in\mathbf{R}^{m \times n}\)

positive positive

incr for \(X_{ij} \geq 0\)

convex convex

norm(X, 1)

\(\max_{j} \|X_{:,j}\|_1\)

\(X \in\mathbf{R}^{m \times n}\)

positive positive

incr for \(X_{ij} \geq 0\)

convex convex

norm(X, “inf”)

\(\max_{i} \|X_{i,:}\|_1\)

\(X \in\mathbf{R}^{m \times n}\)

positive positive

incr for \(X_{ij} \geq 0\)

convex convex

norm(X, “nuc”)

\(\mathrm{tr}\left(\left(X^T X\right)^{1/2}\right)\)

\(X \in\mathbf{R}^{m \times n}\)

positive positive

convex convex

norm(X) norm(X, 2)

\(\sqrt{\lambda_{\max}\left(X^T X\right)}\)

\(X in\mathbf{R}^{m \times n}\)

positive positive

convex convex

perspective(f(x),s)

\(sf(x/s)\)

\(x \in \mathop{\bf dom} f\) \(s \geq 0\)

same sign as f

convex / concave same as \(f\)

pnorm(X, p)

\(p \geq 1\) or p = 'inf'

\(\left(\sum_{ij} |X_{ij}|^p \right)^{1/p}\)

\(X \in \mathbf{R}^{m \times n}\)

positive positive

incr for \(X_{ij} \geq 0\)

convex convex

pnorm(X, p)

\(p < 1\), \(p \neq 0\)

\(\left(\sum_{ij} X_{ij}^p \right)^{1/p}\)

\(X \in \mathbf{R}^{m \times n}_+\)

positive positive

incr incr.

concave concave

ptp(X)

\(\max_{ij} X_{ij} - \min_{ij} X_{ij}\)

\(X \in \mathbf{R}^{m \times n}\)

positive positive

convex convex

quad_form(x, P)

constant \(P \in \mathbf{S}^n_+\)

\(x^T P x\)

\(x \in \mathbf{R}^n\)

positive positive

incr for \(x_i \geq 0\)

convex convex

quad_form(x, P)

constant \(P \in \mathbf{S}^n_-\)

\(x^T P x\)

\(x \in \mathbf{R}^n\)

negative negative

decr for \(x_i \geq 0\)

concave concave

quad_form(c, X)

constant \(c \in \mathbf{R}^n\)

\(c^T X c\)

\(X \in\mathbf{R}^{n \times n}\)

sign depends on c, X

monotonicity depends on c

affine affine

quad_over_lin(X, y)

\(\left(\sum_{ij}X_{ij}^2\right)/y\)

\(x \in \mathbf{R}^n\) \(y > 0\)

positive positive

incr for \(X_{ij} \geq 0\) decr for \(X_{ij} \leq 0\) decr decr. in \(y\)

convex convex

std(X)

analog to numpy.std

\(X \in\mathbf{R}^{m \times n}\)

positive positive

convex convex

sum(X)

\(\sum_{ij}X_{ij}\)

\(X \in\mathbf{R}^{m \times n}\)

same sign as X

incr incr.

affine affine

sum_largest(X, k)

\(k = 1,2,\ldots\)

\(\text{sum of } k\)

\(\text{largest }X_{ij}\)

\(X \in\mathbf{R}^{m \times n}\)

same sign as X

incr incr.

convex convex

sum_smallest(X, k)

\(k = 1,2,\ldots\)

\(\text{sum of } k\)

\(\text{smallest }X_{ij}\)

\(X \in\mathbf{R}^{m \times n}\)

same sign as X

incr incr.

concave concave

sum_squares(X)

\(\sum_{ij}X_{ij}^2\)

\(X \in\mathbf{R}^{m \times n}\)

positive positive

incr for \(X_{ij} \geq 0\) decr for \(X_{ij} \leq 0\)

convex convex

trace(X)

\(\mathrm{tr}\left(X \right)\)

\(X \in\mathbf{R}^{n \times n}\)

same sign as X

incr incr.

affine affine

tr_inv(X)

\(\mathrm{tr}\left(X^{-1} \right)\)

\(X \in\mathbf{S}^n_{++}\)

positive positive

convex convex

tv(x)

\(\sum_{i}|x_{i+1} - x_i|\)

\(x \in \mathbf{R}^n\)

positive positive

convex convex

tv(X) \(Y = \left[\begin{matrix} X_{i+1,j} - X_{ij} \\ X_{i,j+1} -X_{ij} \end{matrix}\right]\)

\(\sum_{ij}\left\| Y \right\|_2\)

\(X \in \mathbf{R}^{m \times n}\)

positive positive

convex convex

tv([X1,…,Xk]) \(Y = \left[\begin{matrix} X_{i+1,j}^{(1)} - X_{ij}^{(1)} \\ X_{i,j+1}^{(1)} -X_{ij}^{(1)} \\ \vdots \\ X_{i+1,j}^{(k)} - X_{ij}^{(k)} \\ X_{i,j+1}^{(k)} -X_{ij}^{(k)} \end{matrix}\right]\)

\(\sum_{ij}\left\| Y \right\|_2\)

\(X^{(i)} \in\mathbf{R}^{m \times n}\)

positive positive

convex convex

var(X)

analog to numpy.var

\(X \in\mathbf{R}^{m \times n}\)

positive positive

convex convex

abs(x)

\(\lvert x \rvert\)

\(x \in \mathbf{C}\)

positive positive

incr for \(x \geq 0\)

convex convex

conj(x)

complex conjugate

\(x \in \mathbf{C}\)

unknown unknown sign

affine affine

entr(x)

\(-x \log (x)\)

\(x > 0\)

unknown unknown sign

concave concave

exp(x)

\(e^x\)

\(x \in \mathbf{R}\)

positive positive

incr incr.

convex convex

huber(x, M=1)

\(M \geq 0\)

\(\begin{aligned} & \text{if } |x| \leq M\colon \\& x^2 \end{aligned}\)

\(\begin{aligned} & \text{if } |x| > M\colon \\& 2M|x| - M^2 \end{aligned}\)

\(x \in \mathbf{R}\)

positive positive

incr for \(x \geq 0\)

decr for \(x \leq 0\)

convex convex

imag(x)

imaginary part

of a complex number

\(x \in \mathbf{C}\)

unknown unknown sign

affine affine

inv_pos(x)

\(1/x\)

\(x > 0\)

positive positive

decr decr.

convex convex

kl_div(x, y)

\(x \log(x/y) - x + y\)

\(x > 0\)

\(y > 0\)

positive positive

convex convex

log(x)

\(\log(x)\)

\(x > 0\)

unknown unknown sign

incr incr.

concave concave

log_normcdf(x)

approximate log of the standard normal CDF

\(x \in \mathbf{R}\)

negative negative

incr incr.

concave concave

log1p(x)

\(\log(x+1)\)

\(x > -1\)

same sign as x

incr incr.

concave concave

loggamma(x)

approximate log of the Gamma function

\(x > 0\)

unknown unknown sign

convex convex

logistic(x)

\(\log(1 + e^{x})\)

\(x \in \mathbf{R}\)

positive positive

incr incr.

convex convex

maximum(x, y)

\(\max \left\{x, y\right\}\)

\(x,y \in \mathbf{R}\)

sign depends on x,y

incr incr.

convex convex

minimum(x, y)

\(\min \left\{x, y\right\}\)

\(x, y \in \mathbf{R}\)

sign depends on x,y

incr incr.

concave concave

multiply(c, x)

\(c \in \mathbf{R}\)

c*x

\(x \in\mathbf{R}\)

\(\mathrm{sign}(cx)\)

monotonicity depends on c

affine affine

neg(x)

\(\max \left\{-x, 0 \right\}\)

\(x \in \mathbf{R}\)

positive positive

decr decr.

convex convex

pos(x)

\(\max \left\{x, 0 \right\}\)

\(x \in \mathbf{R}\)

positive positive

incr incr.

convex convex

power(x, 0)

\(1\)

\(x \in \mathbf{R}\)

positive positive

constant

power(x, 1)

\(x\)

\(x \in \mathbf{R}\)

same sign as x

incr incr.

affine affine

power(x, p)

\(p = 2, 4, 8, \ldots\)

\(x^p\)

\(x \in \mathbf{R}\)

positive positive

incr for \(x \geq 0\) decr for \(x \leq 0\)

convex convex

power(x, p)

\(p < 0\)

\(x^p\)

\(x > 0\)

positive positive

decr decr.

convex convex

power(x, p)

\(0 < p < 1\)

\(x^p\)

\(x \geq 0\)

positive positive

incr incr.

concave concave

power(x, p)

\(p > 1,\ p \neq 2, 4, 8, \ldots\)

\(x^p\)

\(x \geq 0\)

positive positive

incr incr.

convex convex

real(x)

real part of a complex number

\(x \in \mathbf{C}\)

unknown unknown sign

incr incr.

affine affine

rel_entr(x, y)

\(x \log(x/y)\)

\(x > 0\)

\(y > 0\)

unknown unknown sign

decr in \(y\)

convex convex

scalene(x, alpha, beta)

\(\text{alpha} \geq 0\)

\(\text{beta} \geq 0\)

\(\alpha\mathrm{pos}(x)+ \beta\mathrm{neg}(x)\)

\(x \in \mathbf{R}\)

positive positive

incr for \(x \geq 0\)

decr for \(x \leq 0\)

convex convex

sqrt(x)

\(\sqrt x\)

\(x \geq 0\)

positive positive

incr incr.

concave concave

square(x)

\(x^2\)

\(x \in \mathbf{R}\)

positive positive

incr for \(x \geq 0\)

decr for \(x \leq 0\)

convex convex

xexp(x)

\(x e^x\)

\(x \geq 0\)

positive positive

incr incr.

convex convex

bmat()

\(\left[\begin{matrix} X^{(1,1)} & .. & X^{(1,q)} \\ \vdots & & \vdots \\ X^{(p,1)} & .. & X^{(p,q)} \end{matrix}\right]\)

\(X^{(i,j)} \in\mathbf{R}^{m_i \times n_j}\)

incr incr.

affine affine

convolve(c, x)

\(c\in\mathbf{R}^m\)

\(c*x\)

\(x\in \mathbf{R}^n\)

monotonicity depends on c

affine affine

cumsum(X, axis=0)

cumulative sum along given axis.

\(X \in \mathbf{R}^{m \times n}\)

incr incr.

affine affine

diag(x)

\(\left[\begin{matrix}x_1 & & \\& \ddots & \\& & x_n\end{matrix}\right]\)

\(x \in\mathbf{R}^{n}\)

incr incr.

affine affine

diag(X)

\(\left[\begin{matrix}X_{11} \\\vdots \\X_{nn}\end{matrix}\right]\)

\(X \in\mathbf{R}^{n \times n}\)

incr incr.

affine affine

diff(X, k=1, axis=0)

\(k \in 0,1,2,\ldots\)

kth order differences along given axis

\(X \in\mathbf{R}^{m \times n}\)

incr incr.

affine affine

hstack([X1, …, Xk])

\(\left[\begin{matrix}X^{(1)} \cdots X^{(k)}\end{matrix}\right]\)

\(X^{(i)} \in\mathbf{R}^{m \times n_i}\)

incr incr.

affine affine

kron(X, Y)

constant \(X\in\mathbf{R}^{p \times q}\)

\(\left[\begin{matrix}X_{11}Y & .. & X_{1q}Y \\ \vdots & & \vdots \\ X_{p1}Y & .. & X_{pq}Y \end{matrix}\right]\)

\(Y \in \mathbf{R}^{m \times n}\)

monotonicity depends on \(X\)

affine affine

kron(X, Y)

constant \(Y\in\mathbf{R}^{m \times n}\)

\(\left[\begin{matrix}X_{11}Y & .. & X_{1q}Y \\ \vdots & & \vdots \\ X_{p1}Y & .. & X_{pq}Y \end{matrix}\right]\)

\(X \in \mathbf{R}^{p \times q}\)

monotonicity depends on \(Y\)

affine affine

outer(x, y)

constant \(y \in \mathbf{R}^m\)

\(x y^T\)

\(x \in \mathbf{R}^n\)

monotonicity depends on \(Y\)

affine affine

partial_trace(X, dims, axis=0)

partial trace

\(X \in\mathbf{R}^{n \times n}\)

incr incr.

affine affine

partial_transpose(X, dims, axis=0)

partial transpose

\(X \in\mathbf{R}^{n \times n}\)

incr incr.

affine affine

reshape(X, (m’, n’), order=’F’)

\(X' \in\mathbf{R}^{m' \times n'}\)

\(X \in\mathbf{R}^{m \times n}\)

\(m'n' = mn\)

incr incr.

affine affine

upper_tri(X)

flatten the strictly upper-triangular part of \(X\)

\(X \in \mathbf{R}^{n \times n}\)

incr incr.

affine affine

vec(X)

\(x' \in\mathbf{R}^{mn}\)

\(X \in\mathbf{R}^{m \times n}\)

incr incr.

affine affine

vec_to_upper_tri(X, strict=False)

\(x' \in\mathbf{R}^{n(n-1)/2}\) for strict=True

\(x' \in\mathbf{R}^{n(n+1)/2}\) for strict=False

\(X \in\mathbf{R}^{n \times n}\)

incr incr.

affine affine

vstack([X1, …, Xk])

\(\left[\begin{matrix}X^{(1)} \\ \vdots \\X^{(k)}\end{matrix}\right]\)

\(X^{(i)} \in\mathbf{R}^{m_i \times n}\)

incr incr.

affine affine

geo_mean(x)

geo_mean(x, p)

\(p \in \mathbf{R}^n_{+}\)

\(p \neq 0\)

\(x_1^{1/n} \cdots x_n^{1/n}\)

\(\left(x_1^{p_1} \cdots x_n^{p_n}\right)^{\frac{1}{\mathbf{1}^T p}}\)

\(x \in \mathbf{R}^n_{+}\)

incr incr.

affine log-log affine

harmonic_mean(x)

\(\frac{n}{\frac{1}{x_1} + \cdots + \frac{1}{x_n}}\)

\(x \in \mathbf{R}^n_{+}\)

incr incr.

concave log-log concave

max(X)

\(\max_{ij}\left\{ X_{ij}\right\}\)

\(X \in\mathbf{R}^{m \times n}_{++}\)

incr incr.

convex log-log convex

min(X)

\(\min_{ij}\left\{ X_{ij}\right\}\)

\(X \in\mathbf{R}^{m \times n}_{++}\)

incr incr.

concave log-log concave

norm(x)

norm(x, 2)

\(\sqrt{\sum_{i} \lvert x_{i} \rvert^2 }\)

\(X \in\mathbf{R}^{n}_{++}\)

incr incr.

convex log-log convex

norm(X, “fro”)

\(\sqrt{\sum_{ij}X_{ij}^2 }\)

\(X \in\mathbf{R}^{m \times n}_{++}\)

incr incr.

convex log-log convex

norm(X, 1)

\(\sum_{ij}\lvert X_{ij} \rvert\)

\(X \in\mathbf{R}^{m \times n}_{++}\)

incr incr.

convex log-log convex

norm(X, “inf”)

\(\max_{ij} \{\lvert X_{ij} \rvert\}\)

\(X \in\mathbf{R}^{m \times n}_{++}\)

incr incr.

convex log-log convex

pnorm(X, p)

\(p \geq 1\)

or p = 'inf'

\(\left(\sum_{ij} |X_{ij}|^p \right)^{1/p}\)

\(X \in \mathbf{R}^{m \times n}_{++}\)

incr incr.

convex log-log convex

pnorm(X, p) \(0 < p < 1\)

\(\left(\sum_{ij} X_{ij}^p \right)^{1/p}\)

\(X \in \mathbf{R}^{m \times n}_{++}\)

incr incr.

convex log-log convex

prod(X)

\(\prod_{ij}X_{ij}\)

\(X \in\mathbf{R}^{m \times n}_{++}\)

incr incr.

affine log-log affine

quad_form(x, P)

\(x^T P x\)

\(x \in \mathbf{R}^n\), \(P \in \mathbf{R}^{n \times n}_{++}\)

incr incr.

convex log-log convex

quad_over_lin(X, y)

\(\left(\sum_{ij}X_{ij}^2\right)/y\)

\(x \in \mathbf{R}^n_{++}\)

\(y > 0\)

incr in \(X_{ij}\)

decr decr. in \(y\)

convex log-log convex

sum(X)

\(\sum_{ij}X_{ij}\)

\(X \in\mathbf{R}^{m \times n}_{++}\)

incr incr.

convex log-log convex

sum_squares(X)

\(\sum_{ij}X_{ij}^2\)

\(X \in\mathbf{R}^{m \times n}_{++}\)

incr incr.

convex log-log convex

trace(X)

\(\mathrm{tr}\left(X \right)\)

\(X \in\mathbf{R}^{n \times n}_{++}\)

incr incr.

convex log-log convex

pf_eigenvalue(X)

spectral radius of \(X\)

\(X \in\mathbf{R}^{n \times n}_{++}\)

incr incr.

convex log-log convex

diff_pos(x, y)

\(x - y\)

\(0 < y < x\)

incr incr. in \(x\)

decr decr. in \(y\)

concave log-log concave

entr(x)

\(-x \log (x)\)

\(0 < x < 1\)

None

concave log-log concave

exp(x)

\(e^x\)

\(x > 0\)

incr incr.

convex log-log convex

log(x)

\(\log(x)\)

\(x > 1\)

incr incr.

concave log-log concave

maximum(x, y)

\(\max \left\{x, y\right\}\)

\(x,y > 0\)

incr incr.

convex log-log convex

minimum(x, y)

\(\min \left\{x, y\right\}\)

\(x, y > 0\)

incr incr.

concave log-log concave

multiply(x, y)

\(x*y\)

\(x, y > 0\)

incr incr.

affine log-log affine

one_minus_pos(x)

\(1 - x\)

\(0 < x < 1\)

decr decr.

concave log-log concave

power(x, 0)

\(1\)

\(x > 0\)

constant

constant

power(x, p)

\(x\)

\(x > 0\)

incr for \(p > 0\)

decr for \(p < 0\)

affine log-log affine

sqrt(x)

\(\sqrt x\)

\(x > 0\)

incr incr.

affine log-log affine

square(x)

\(x^2\)

\(x > 0\)

incr incr.

affine log-log affine

xexp(x)

\(x e^x\)

\(x > 0\)

incr incr.

convex log-log convex

bmat()

\(\left[\begin{matrix} X^{(1,1)} & .. & X^{(1,q)} \\ \vdots & & \vdots \\ X^{(p,1)} & .. & X^{(p,q)} \end{matrix}\right]\)

\(X^{(i,j)} \in\mathbf{R}^{m_i \times n_j}_{++}\)

incr incr.

affine log-log affine

diag(x)

\(\left[\begin{matrix}x_1 & & \\& \ddots & \\& & x_n\end{matrix}\right]\)

\(x \in\mathbf{R}^{n}_{++}\)

incr incr.

affine log-log affine

diag(X)

\(\left[\begin{matrix}X_{11} \\\vdots \\X_{nn}\end{matrix}\right]\)

\(X \in\mathbf{R}^{n \times n}_{++}\)

incr incr.

affine log-log affine

eye_minus_inv(X)

\((I - X)^{-1}\)

\(X \in\mathbf{R}^{n \times n}_{++}\),

\(\lambda_{\text{pf}}(X) < 1\)

incr incr.

convex log-log convex

gmatmul(A, x)

\(A \in \mathbf{R}^{m \times n}\)

\(\left[\begin{matrix}\prod_{j=1}^n x_j^{A_{1j}} \\\vdots \\\prod_{j=1}^n x_j^{A_{mj}}\end{matrix}\right]\)

\(x \in \mathbf{R}^n_{++}\)

incr for \(A_{ij} \geq 0\)

decr for \(A_{ij} \leq 0\)

affine log-log affine

hstack([X1, …, Xk])

\(\left[\begin{matrix}X^{(1)} \cdots X^{(k)}\end{matrix}\right]\)

\(X^{(i)} \in\mathbf{R}^{m \times n_i}_{++}\)

incr incr.

affine log-log affine

matmul(X, Y)

\(XY\)

\(X \in\mathbf{R}^{m \times n}_{++}\)

\(Y \in\mathbf{R}^{n \times p}_{++}\)

incr incr.

convex log-log convex

resolvent(X)

\((sI - X)^{-1}\)

\(X \in\mathbf{R}^{n \times n}_{++}\)

\(\lambda_{\text{pf}}(X) < s\)

incr incr.

convex log-log convex

reshape(X, (m’, n’))

\(X' \in\mathbf{R}^{m' \times n'}\)

\(X \in\mathbf{R}^{m \times n}_{++}\)

\(m'n' = mn\)

incr incr.

affine log-log affine

vec(X)

\(x' \in\mathbf{R}^{mn}\)

\(X \in\mathbf{R}^{m \times n}_{++}\)

incr incr.

affine log-log affine

vstack([X1, …, Xk])

\(\left[\begin{matrix}X^{(1)} \\ \vdots \\X^{(k)}\end{matrix}\right]\)

\(X^{(i)} \in\mathbf{R}^{m_i \times n}_{++}\)

incr incr.

affine log-log affine