Entropy maximization¶
A derivative work by Judson Wilson, 6/2/2014. Adapted from the CVX example of the same name, by Joëlle Skaf, 4/24/2008.
Introduction¶
Consider the linear inequality constrained entropy maximization problem:
\[\begin{split}\begin{array}{ll}
\mbox{maximize} & -\sum_{i=1}^n x_i \log(x_i) \\
\mbox{subject to} & \sum_{i=1}^n x_i = 1 \\
& Fx \succeq g,
\end{array}\end{split}\]
where the variable is \(x \in \mathbf{{\mbox{R}}}^{n}\).
This problem can be formulated in CVXPY using the entr
atom.
Generate problem data¶
import cvxpy as cp
import numpy as np
# Make random input repeatable.
np.random.seed(0)
# Matrix size parameters.
n = 20
m = 10
p = 5
# Generate random problem data.
tmp = np.random.rand(n)
A = np.random.randn(m, n)
b = A.dot(tmp)
F = np.random.randn(p, n)
g = F.dot(tmp) + np.random.rand(p)
Formulate and solve problem¶
# Entropy maximization.
x = cp.Variable(shape=n)
obj = cp.Maximize(cp.sum(cp.entr(x)))
constraints = [A*x == b,
F*x <= g ]
prob = cp.Problem(obj, constraints)
prob.solve(solver=cp.CVXOPT, verbose=True)
# Print result.
print("\nThe optimal value is:", prob.value)
print('\nThe optimal solution is:')
print(x.value)
pcost dcost gap pres dres
0: 0.0000e+00 -2.8736e+00 2e+01 1e+00 1e+00
1: -6.0720e+00 -5.9687e+00 2e+00 8e-02 2e-01
2: -5.4688e+00 -5.5883e+00 4e-01 8e-03 4e-02
3: -5.4595e+00 -5.4889e+00 5e-02 6e-04 1e-02
4: -5.4763e+00 -5.4816e+00 1e-02 1e-04 5e-03
5: -5.4804e+00 -5.4809e+00 1e-03 1e-05 2e-03
6: -5.4809e+00 -5.4809e+00 3e-05 5e-07 3e-04
7: -5.4809e+00 -5.4809e+00 4e-07 6e-09 1e-05
8: -5.4809e+00 -5.4809e+00 4e-09 6e-11 3e-07
9: -5.4809e+00 -5.4809e+00 4e-11 6e-13 4e-09
Optimal solution found.
The optimal value is: 5.480901486350394
The optimal solution is:
[0.43483319 0.66111715 0.49201039 0.36030618 0.38416629 0.30283658
0.41730232 0.79107794 0.76667302 0.38292365 1.2479328 0.50416987
0.68053832 0.67163958 0.13877259 0.5248668 0.08418897 0.56927148
0.50000248 0.78291311]