Source code for cvxpy.atoms.affine.wraps

"""
Copyright 2013 Steven Diamond, 2022 the CVXPY authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from typing import List, Tuple

import cvxpy.lin_ops.lin_op as lo
from cvxpy.atoms.affine.affine_atom import AffAtom
from cvxpy.constraints.constraint import Constraint


class Wrap(AffAtom):
    """A no-op wrapper to assert properties.
    """
    def __init__(self, arg) -> None:
        return super(Wrap, self).__init__(arg)

    def is_atom_log_log_convex(self) -> bool:
        return True

    def is_atom_log_log_concave(self) -> bool:
        return True

    def numeric(self, values):
        """ Returns input.
        """
        return values[0]

    def is_complex(self) -> bool:
        return self.args[0].is_complex()

    def shape_from_args(self) -> Tuple[int, ...]:
        """Shape of input.
        """
        return self.args[0].shape

    def graph_implementation(
        self, arg_objs, shape: Tuple[int, ...], data=None
    ) -> Tuple[lo.LinOp, List[Constraint]]:
        """Stack the expressions horizontally.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        shape : tuple
            The shape of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        return (arg_objs[0], [])


class nonneg_wrap(Wrap):
    """Asserts that the expression is nonnegative.
    """
    def is_nonneg(self) -> bool:
        return True


class nonpos_wrap(Wrap):
    """Asserts that the expression is nonpositive.
    """
    def is_nonpos(self) -> bool:
        return True


[docs]class psd_wrap(Wrap): """Asserts that a square matrix is PSD. """ def validate_arguments(self) -> None: arg = self.args[0] ndim_test = len(arg.shape) == 2 if not ndim_test: raise ValueError("The input must be a square matrix.") elif arg.shape[0] != arg.shape[1]: raise ValueError("The input must be a square matrix.") def is_psd(self) -> bool: return True def is_nsd(self) -> bool: return False def is_symmetric(self) -> bool: return not self.args[0].is_complex() def is_hermitian(self) -> bool: return True
class symmetric_wrap(Wrap): """Asserts that a real square matrix is symmetric """ def validate_arguments(self) -> None: validate_real_square(self.args[0]) def is_symmetric(self) -> bool: return True def is_hermitian(self) -> bool: return True class hermitian_wrap(Wrap): """Asserts that a square matrix is Hermitian. """ def validate_arguments(self) -> None: arg = self.args[0] ndim_test = len(arg.shape) == 2 if not ndim_test: raise ValueError("The input must be a square matrix.") elif arg.shape[0] != arg.shape[1]: raise ValueError("The input must be a square matrix.") def is_hermitian(self) -> bool: return True class skew_symmetric_wrap(Wrap): """Asserts that X is a real square matrix, satisfying X + X.T == 0. """ def validate_arguments(self) -> None: validate_real_square(self.args[0]) def is_skew_symmetric(self) -> bool: return True def validate_real_square(arg): ndim_test = len(arg.shape) == 2 if not ndim_test: raise ValueError("The input must be a square matrix.") elif arg.shape[0] != arg.shape[1]: raise ValueError("The input must be a square matrix.") elif not arg.is_real(): raise ValueError("The input must be a real matrix.")