Source code for cvxpy.atoms.affine.trace
"""
Copyright 2013 Steven Diamond
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from typing import List, Tuple
import numpy as np
import cvxpy.lin_ops.lin_op as lo
import cvxpy.lin_ops.lin_utils as lu
from cvxpy.atoms.affine.affine_atom import AffAtom
from cvxpy.constraints.constraint import Constraint
[docs]
class trace(AffAtom):
"""The sum of the diagonal entries of a matrix.
Parameters
----------
expr : Expression
The expression to sum the diagonal of.
"""
def __init__(self, expr) -> None:
super(trace, self).__init__(expr)
def sign_from_args(self) -> Tuple[bool, bool]:
"""Trace is nonneg (nonpos) if its argument is elementwise nonneg
(nonpos) or psd (nsd).
"""
is_nonneg = self.args[0].is_nonneg() or self.args[0].is_psd()
is_nonpos = self.args[0].is_nonpos() or self.args[0].is_nsd()
return is_nonneg, is_nonpos
@AffAtom.numpy_numeric
def numeric(self, values):
"""Sums the diagonal entries.
"""
return np.trace(values[0])
def validate_arguments(self) -> None:
"""Checks that the argument is a square matrix.
"""
shape = self.args[0].shape
if self.args[0].ndim != 2 or shape[0] != shape[1]:
raise ValueError("Argument to trace must be a square matrix.")
def shape_from_args(self) -> Tuple[int, ...]:
"""Always scalar.
"""
return tuple()
def is_real(self) -> bool:
return self.args[0].is_real() or self.args[0].is_hermitian()
def is_complex(self) -> bool:
return not self.is_real()
def is_atom_log_log_convex(self) -> bool:
"""Is the atom log-log convex?
"""
return True
def is_atom_log_log_concave(self) -> bool:
"""Is the atom log-log concave?
"""
return False
def graph_implementation(
self, arg_objs, shape: Tuple[int, ...], data=None
) -> Tuple[lo.LinOp, List[Constraint]]:
"""Sum the diagonal entries of the linear expression.
Parameters
----------
arg_objs : list
LinExpr for each argument.
shape : tuple
The shape of the resulting expression.
data :
Additional data required by the atom.
Returns
-------
tuple
(LinOp for objective, list of constraints)
"""
return (lu.trace(arg_objs[0]), [])