Source code for cvxpy.atoms.affine.cumsum
"""
Copyright 2013 Steven Diamond
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from typing import List, Tuple
import numpy as np
import scipy.sparse as sp
import cvxpy.lin_ops.lin_op as lo
import cvxpy.lin_ops.lin_utils as lu
from cvxpy.atoms.affine.affine_atom import AffAtom
from cvxpy.atoms.affine.binary_operators import MulExpression
from cvxpy.atoms.axis_atom import AxisAtom
from cvxpy.constraints.constraint import Constraint
from cvxpy.expressions.expression import Expression
from cvxpy.expressions.variable import Variable
def get_diff_mat(dim: int, axis: int) -> sp.csc_matrix:
"""Return a sparse matrix representation of first order difference operator.
Parameters
----------
dim : int
The length of the matrix dimensions.
axis : int
The axis to take the difference along.
Returns
-------
sp.csc_matrix
A square matrix representing first order difference.
"""
mat = sp.diags([np.ones(dim), -np.ones(dim - 1)], [0, -1],
shape=(dim, dim),
format='csc')
return mat if axis == 0 else mat.T
[docs]
class cumsum(AffAtom, AxisAtom):
"""
Cumulative sum of the elements of an expression.
Attributes
----------
expr : CVXPY expression
The expression being summed.
axis : int
The axis to sum across if 2D.
"""
def __init__(self, expr: Expression, axis: int = 0) -> None:
super(cumsum, self).__init__(expr, axis)
@AffAtom.numpy_numeric
def numeric(self, values):
"""
Returns the cumulative sum of elements of an expression over an axis.
"""
return np.cumsum(values[0], axis=self.axis)
def shape_from_args(self) -> Tuple[int, ...]:
"""The same as the input."""
return self.args[0].shape
def _grad(self, values):
"""Gives the (sub/super)gradient of the atom w.r.t. each argument.
Matrix expressions are vectorized, so the gradient is a matrix.
Args:
values: A list of numeric values for the arguments.
Returns:
A list of SciPy CSC sparse matrices or None.
"""
dim = values[0].shape[self.axis]
mat = sp.tril(np.ones((dim, dim)))
var = Variable(self.args[0].shape)
if self.axis == 0:
grad = MulExpression(mat, var)._grad(values)[1]
else:
grad = MulExpression(var, mat.T)._grad(values)[0]
return [grad]
def get_data(self):
"""Returns the axis being summed."""
return [self.axis]
def graph_implementation(
self, arg_objs, shape: Tuple[int, ...], data=None
) -> Tuple[lo.LinOp, List[Constraint]]:
"""Cumulative sum via difference matrix.
Parameters
----------
arg_objs : list
LinExpr for each argument.
shape : tuple
The shape of the resulting expression.
data :
Additional data required by the atom.
Returns
-------
tuple
(LinOp for objective, list of constraints)
"""
# Implicit O(n) definition:
# X = Y[1:,:] - Y[:-1, :]
Y = lu.create_var(shape)
axis = data[0]
dim = shape[axis]
diff_mat = get_diff_mat(dim, axis)
diff_mat = lu.create_const(diff_mat, (dim, dim), sparse=True)
if axis == 0:
diff = lu.mul_expr(diff_mat, Y)
else:
diff = lu.rmul_expr(Y, diff_mat)
return (Y, [lu.create_eq(arg_objs[0], diff)])