Source code for cvxpy.constraints.nonpos
"""
Copyright, the CVXPY authors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import numpy as np
# Only need Variable from expressions, but that would create a circular import.
from cvxpy.constraints.constraint import Constraint
from cvxpy.utilities import scopes
[docs]class NonPos(Constraint):
"""A constraint of the form :math:`x \\leq 0`.
The preferred way of creating a ``NonPos`` constraint is through
operator overloading. To constrain an expression ``x`` to be non-positive,
simply write ``x <= 0``; to constrain ``x`` to be non-negative, write
``x >= 0``. The former creates a ``NonPos`` constraint with ``x``
as its argument, while the latter creates one with ``-x`` as its argument.
Strict inequalities are not supported, as they do not make sense in a
numerical setting.
Parameters
----------
expr : Expression
The expression to constrain.
constr_id : int
A unique id for the constraint.
"""
def __init__(self, expr, constr_id=None) -> None:
super(NonPos, self).__init__([expr], constr_id)
if not self.args[0].is_real():
raise ValueError("Input to NonPos must be real.")
def name(self) -> str:
return "%s <= 0" % self.args[0]
[docs] def is_dcp(self, dpp: bool = False) -> bool:
"""A non-positive constraint is DCP if its argument is convex."""
if dpp:
with scopes.dpp_scope():
return self.args[0].is_convex()
return self.args[0].is_convex()
def is_dgp(self, dpp: bool = False) -> bool:
return False
def is_dqcp(self) -> bool:
return self.args[0].is_quasiconvex()
@property
def residual(self):
"""The residual of the constraint.
Returns
---------
NumPy.ndarray
"""
if self.expr.value is None:
return None
return np.maximum(self.expr.value, 0)
[docs] def violation(self):
res = self.residual
if res is None:
raise ValueError("Cannot compute the violation of an constraint "
"whose expression is None-valued.")
viol = np.linalg.norm(res, ord=2)
return viol
class NonNeg(Constraint):
"""A constraint of the form :math:`x \\geq 0`.
This class was created to account for the fact that the
ConicSolver interface returns matrix data stated with respect
to the nonnegative orthant, rather than the nonpositive orthant.
This class can be removed if the behavior of ConicSolver is
changed. However the current behavior of ConicSolver means
CVXPY's dual variable and Lagrangian convention follows the
most common convention in the literature.
Parameters
----------
expr : Expression
The expression to constrain.
constr_id : int
A unique id for the constraint.
"""
def __init__(self, expr, constr_id=None) -> None:
super(NonNeg, self).__init__([expr], constr_id)
if not self.args[0].is_real():
raise ValueError("Input to NonNeg must be real.")
def name(self) -> str:
return "0 <= %s" % self.args[0]
def is_dcp(self, dpp: bool = False) -> bool:
"""A non-negative constraint is DCP if its argument is concave."""
if dpp:
with scopes.dpp_scope():
return self.args[0].is_concave()
return self.args[0].is_concave()
def is_dgp(self, dpp: bool = False) -> bool:
return False
def is_dqcp(self) -> bool:
return self.args[0].is_quasiconcave()
@property
def residual(self):
"""The residual of the constraint.
Returns
---------
NumPy.ndarray
"""
if self.expr.value is None:
return None
return np.abs(np.minimum(self.expr.value, 0))
def violation(self):
res = self.residual
if res is None:
raise ValueError("Cannot compute the violation of an constraint "
"whose expression is None-valued.")
viol = np.linalg.norm(res, ord=2)
return viol
class Inequality(Constraint):
"""A constraint of the form :math:`x \\leq y`.
Parameters
----------
lhs : Expression
The expression to be upper-bounded by rhs
rhs : Expression
The expression to be lower-bounded by lhs
constr_id : int
A unique id for the constraint.
"""
def __init__(self, lhs, rhs, constr_id=None) -> None:
self._expr = lhs - rhs
# TODO remove this restriction.
if self._expr.is_complex():
raise ValueError("Inequality constraints cannot be complex.")
super(Inequality, self).__init__([lhs, rhs], constr_id)
def _construct_dual_variables(self, args) -> None:
super(Inequality, self)._construct_dual_variables([self._expr])
@property
def expr(self):
return self._expr
def name(self) -> str:
return "%s <= %s" % (self.args[0], self.args[1])
@property
def shape(self):
"""int : The shape of the constrained expression."""
return self.expr.shape
@property
def size(self):
"""int : The size of the constrained expression."""
return self.expr.size
def is_dcp(self, dpp: bool = False) -> bool:
"""A non-positive constraint is DCP if its argument is convex."""
if dpp:
with scopes.dpp_scope():
return self.expr.is_convex()
return self.expr.is_convex()
def is_dgp(self, dpp: bool = False) -> bool:
if dpp:
with scopes.dpp_scope():
return (self.args[0].is_log_log_convex() and
self.args[1].is_log_log_concave())
return (self.args[0].is_log_log_convex() and
self.args[1].is_log_log_concave())
def is_dpp(self, context='dcp') -> bool:
if context.lower() == 'dcp':
return self.is_dcp(dpp=True)
elif context.lower() == 'dgp':
return self.is_dgp(dpp=True)
else:
raise ValueError('Unsupported context ', context)
def is_dqcp(self) -> bool:
return (
self.is_dcp() or
(self.args[0].is_quasiconvex() and self.args[1].is_constant()) or
(self.args[0].is_constant() and self.args[1].is_quasiconcave()))
@property
def residual(self):
"""The residual of the constraint.
Returns
---------
NumPy.ndarray
"""
if self.expr.value is None:
return None
return np.maximum(self.expr.value, 0)