Source code for cvxpy.constraints.nonpos

"""
Copyright, the CVXPY authors

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

import numpy as np

# Only need Variable from expressions, but that would create a circular import.
from cvxpy.constraints.constraint import Constraint
from cvxpy.utilities import scopes


[docs]class NonPos(Constraint): """A constraint of the form :math:`x \\leq 0`. The preferred way of creating a ``NonPos`` constraint is through operator overloading. To constrain an expression ``x`` to be non-positive, simply write ``x <= 0``; to constrain ``x`` to be non-negative, write ``x >= 0``. The former creates a ``NonPos`` constraint with ``x`` as its argument, while the latter creates one with ``-x`` as its argument. Strict inequalities are not supported, as they do not make sense in a numerical setting. Parameters ---------- expr : Expression The expression to constrain. constr_id : int A unique id for the constraint. """ def __init__(self, expr, constr_id=None) -> None: super(NonPos, self).__init__([expr], constr_id) if not self.args[0].is_real(): raise ValueError("Input to NonPos must be real.") def name(self) -> str: return "%s <= 0" % self.args[0]
[docs] def is_dcp(self, dpp: bool = False) -> bool: """A non-positive constraint is DCP if its argument is convex.""" if dpp: with scopes.dpp_scope(): return self.args[0].is_convex() return self.args[0].is_convex()
def is_dgp(self, dpp: bool = False) -> bool: return False def is_dqcp(self) -> bool: return self.args[0].is_quasiconvex() @property def residual(self): """The residual of the constraint. Returns --------- NumPy.ndarray """ if self.expr.value is None: return None return np.maximum(self.expr.value, 0)
[docs] def violation(self): res = self.residual if res is None: raise ValueError("Cannot compute the violation of an constraint " "whose expression is None-valued.") viol = np.linalg.norm(res, ord=2) return viol
class NonNeg(Constraint): """A constraint of the form :math:`x \\geq 0`. This class was created to account for the fact that the ConicSolver interface returns matrix data stated with respect to the nonnegative orthant, rather than the nonpositive orthant. This class can be removed if the behavior of ConicSolver is changed. However the current behavior of ConicSolver means CVXPY's dual variable and Lagrangian convention follows the most common convention in the literature. Parameters ---------- expr : Expression The expression to constrain. constr_id : int A unique id for the constraint. """ def __init__(self, expr, constr_id=None) -> None: super(NonNeg, self).__init__([expr], constr_id) if not self.args[0].is_real(): raise ValueError("Input to NonNeg must be real.") def name(self) -> str: return "0 <= %s" % self.args[0] def is_dcp(self, dpp: bool = False) -> bool: """A non-negative constraint is DCP if its argument is concave.""" if dpp: with scopes.dpp_scope(): return self.args[0].is_concave() return self.args[0].is_concave() def is_dgp(self, dpp: bool = False) -> bool: return False def is_dqcp(self) -> bool: return self.args[0].is_quasiconcave() @property def residual(self): """The residual of the constraint. Returns --------- NumPy.ndarray """ if self.expr.value is None: return None return np.abs(np.minimum(self.expr.value, 0)) def violation(self): res = self.residual if res is None: raise ValueError("Cannot compute the violation of an constraint " "whose expression is None-valued.") viol = np.linalg.norm(res, ord=2) return viol class Inequality(Constraint): """A constraint of the form :math:`x \\leq y`. Parameters ---------- lhs : Expression The expression to be upper-bounded by rhs rhs : Expression The expression to be lower-bounded by lhs constr_id : int A unique id for the constraint. """ def __init__(self, lhs, rhs, constr_id=None) -> None: self._expr = lhs - rhs # TODO remove this restriction. if self._expr.is_complex(): raise ValueError("Inequality constraints cannot be complex.") super(Inequality, self).__init__([lhs, rhs], constr_id) def _construct_dual_variables(self, args) -> None: super(Inequality, self)._construct_dual_variables([self._expr]) @property def expr(self): return self._expr def name(self) -> str: return "%s <= %s" % (self.args[0], self.args[1]) @property def shape(self): """int : The shape of the constrained expression.""" return self.expr.shape @property def size(self): """int : The size of the constrained expression.""" return self.expr.size def is_dcp(self, dpp: bool = False) -> bool: """A non-positive constraint is DCP if its argument is convex.""" if dpp: with scopes.dpp_scope(): return self.expr.is_convex() return self.expr.is_convex() def is_dgp(self, dpp: bool = False) -> bool: if dpp: with scopes.dpp_scope(): return (self.args[0].is_log_log_convex() and self.args[1].is_log_log_concave()) return (self.args[0].is_log_log_convex() and self.args[1].is_log_log_concave()) def is_dpp(self, context='dcp') -> bool: if context.lower() == 'dcp': return self.is_dcp(dpp=True) elif context.lower() == 'dgp': return self.is_dgp(dpp=True) else: raise ValueError('Unsupported context ', context) def is_dqcp(self) -> bool: return ( self.is_dcp() or (self.args[0].is_quasiconvex() and self.args[1].is_constant()) or (self.args[0].is_constant() and self.args[1].is_quasiconcave())) @property def residual(self): """The residual of the constraint. Returns --------- NumPy.ndarray """ if self.expr.value is None: return None return np.maximum(self.expr.value, 0)