Support vector machine classifier with :math:`\ell_1`-regularization ==================================================================== In this example we use CVXPY to train a SVM classifier with :math:`\ell_1`-regularization. We are given data :math:`(x_i,y_i)`, :math:`i=1,\ldots, m`. The :math:`x_i \in {\bf R}^n` are feature vectors, while the :math:`y_i \in \{\pm 1\}` are associated boolean outcomes. Our goal is to construct a good linear classifier :math:`\hat y = {\rm sign}(\beta^T x - v)`. We find the parameters :math:`\beta,v` by minimizing the (convex) function .. math:: f(\beta,v) = (1/m) \sum_i \left(1 - y_i ( \beta^T x_i-v) \right)_+ + \lambda \| \beta\|_1 The first term is the average hinge loss. The second term shrinks the coefficients in :math:`\beta` and encourages sparsity. The scalar :math:`\lambda \geq 0` is a (regularization) parameter. Minimizing :math:`f(\beta,v)` simultaneously selects features and fits the classifier. Example ~~~~~~~ In the following code we generate data with :math:`n=20` features by randomly choosing :math:`x_i` and a sparse :math:`\beta_{\mathrm{true}} \in {\bf R}^n`. We then set :math:`y_i = {\rm sign}(\beta_{\mathrm{true}}^T x_i -v_{\mathrm{true}} - z_i)`, where the :math:`z_i` are i.i.d. normal random variables. We divide the data into training and test sets with :math:`m=1000` examples each. .. code:: python # Generate data for SVM classifier with L1 regularization. from __future__ import division import numpy as np np.random.seed(1) n = 20 m = 1000 TEST = m DENSITY = 0.2 beta_true = np.random.randn(n,1) idxs = np.random.choice(range(n), int((1-DENSITY)*n), replace=False) for idx in idxs: beta_true[idx] = 0 offset = 0 sigma = 45 X = np.random.normal(0, 5, size=(m,n)) Y = np.sign(X.dot(beta_true) + offset + np.random.normal(0,sigma,size=(m,1))) X_test = np.random.normal(0, 5, size=(TEST,n)) Y_test = np.sign(X_test.dot(beta_true) + offset + np.random.normal(0,sigma,size=(TEST,1))) We next formulate the optimization problem using CVXPY. .. code:: python # Form SVM with L1 regularization problem. import cvxpy as cp beta = cp.Variable((n,1)) v = cp.Variable() loss = cp.sum(cp.pos(1 - cp.multiply(Y, X @ beta - v))) reg = cp.norm(beta, 1) lambd = cp.Parameter(nonneg=True) prob = cp.Problem(cp.Minimize(loss/m + lambd*reg)) We solve the optimization problem for a range of :math:`\lambda` to compute a trade-off curve. We then plot the train and test error over the trade-off curve. A reasonable choice of :math:`\lambda` is the value that minimizes the test error. .. code:: python # Compute a trade-off curve and record train and test error. TRIALS = 100 train_error = np.zeros(TRIALS) test_error = np.zeros(TRIALS) lambda_vals = np.logspace(-2, 0, TRIALS) beta_vals = [] for i in range(TRIALS): lambd.value = lambda_vals[i] prob.solve() train_error[i] = (np.sign(X.dot(beta_true) + offset) != np.sign(X.dot(beta.value) - v.value)).sum()/m test_error[i] = (np.sign(X_test.dot(beta_true) + offset) != np.sign(X_test.dot(beta.value) - v.value)).sum()/TEST beta_vals.append(beta.value) .. code:: python # Plot the train and test error over the trade-off curve. import matplotlib.pyplot as plt %matplotlib inline %config InlineBackend.figure_format = 'svg' plt.plot(lambda_vals, train_error, label="Train error") plt.plot(lambda_vals, test_error, label="Test error") plt.xscale('log') plt.legend(loc='upper left') plt.xlabel(r"$\lambda$", fontsize=16) plt.show() .. image:: svm_files/svm_8_0.svg We also plot the regularization path, or the :math:`\beta_i` versus :math:`\lambda`. Notice that the :math:`\beta_i` do not necessarily decrease monotonically as :math:`\lambda` increases. 4 features remain non-zero longer for larger :math:`\lambda` than the rest, which suggests that these features are the most important. In fact :math:`\beta_{\mathrm{true}}` had 4 non-zero values. .. code:: python # Plot the regularization path for beta. for i in range(n): plt.plot(lambda_vals, [wi[i,0] for wi in beta_vals]) plt.xlabel(r"$\lambda$", fontsize=16) plt.xscale("log") .. image:: svm_files/svm_10_0.svg