Second-order cone program ========================= A second-order cone program (SOCP) is an optimization problem of the form .. math:: \begin{array}{ll} \mbox{minimize} & f^Tx\\ \mbox{subject to} & \|A_ix + b_i\|_2 \leq c_i^Tx + d_i, \quad i=1,\ldots,m \\ & Fx = g, \end{array} where :math:`x \in \mathcal{R}^{n}` is the optimization variable and :math:`f \in \mathcal{R}^n`, :math:`A_i \in \mathcal{R}^{n_i \times n}`, :math:`b_i \in \mathcal{R}^{n_i}`, :math:`c_i \in \mathcal{R}^n`, :math:`d_i \in \mathcal{R}`, :math:`F \in \mathcal{R}^{p \times n}`, and :math:`g \in \mathcal{R}^p` are problem data. An example of an SOCP is the robust linear program .. math:: \begin{array}{ll} \mbox{minimize} & c^Tx\\ \mbox{subject to} & (a_i + u_i)^Tx \leq b_i \textrm{ for all } \|u_i\|_2 \leq 1, \quad i=1,\ldots,m, \end{array} where the problem data :math:`a_i` are known within an :math:`\ell_2`-norm ball of radius one. The robust linear program can be rewritten as the SOCP .. math:: \begin{array}{ll} \mbox{minimize} & c^Tx\\ \mbox{subject to} & a_i^Tx + \|x\|_2 \leq b_i, \quad i=1,\ldots,m, \end{array} When we solve a SOCP, in addition to a solution :math:`x^\star`, we obtain a dual solution :math:`\lambda_i^\star` corresponding to each second-order cone constraint. A non-zero :math:`\lambda_i^\star` indicates that the constraint :math:`\|A_ix + b_i\|_2 \leq c_i^Tx + d_i` holds with equality for :math:`x^\star` and suggests that changing :math:`d_i` would change the optimal value. Example ------- In the following code, we solve a SOCP with CVXPY. .. code:: python # Import packages. import cvxpy as cp import numpy as np # Generate a random feasible SOCP. m = 3 n = 10 p = 5 n_i = 5 np.random.seed(2) f = np.random.randn(n) A = [] b = [] c = [] d = [] x0 = np.random.randn(n) for i in range(m): A.append(np.random.randn(n_i, n)) b.append(np.random.randn(n_i)) c.append(np.random.randn(n)) d.append(np.linalg.norm(A[i] @ x0 + b, 2) - c[i].T @ x0) F = np.random.randn(p, n) g = F @ x0 # Define and solve the CVXPY problem. x = cp.Variable(n) # We use cp.SOC(t, x) to create the SOC constraint ||x||_2 <= t. soc_constraints = [ cp.SOC(c[i].T @ x + d[i], A[i] @ x + b[i]) for i in range(m) ] prob = cp.Problem(cp.Minimize(f.T@x), soc_constraints + [F @ x == g]) prob.solve() # Print result. print("The optimal value is", prob.value) print("A solution x is") print(x.value) for i in range(m): print("SOC constraint %i dual variable solution" % i) print(soc_constraints[i].dual_value) .. parsed-literal:: The optimal value is -9.582695716265503 A solution x is [ 1.40303325 2.4194569 1.69146656 -0.26922215 1.30825472 -0.70834842 0.19313706 1.64153496 0.47698583 0.66581033] SOC constraint 0 dual variable solution [ 0.61662526 0.35370661 -0.02327185 0.04253095 0.06243588 0.49886837] SOC constraint 1 dual variable solution [ 0.35283078 -0.14301082 0.16539699 -0.22027817 0.15440264 0.06571645] SOC constraint 2 dual variable solution [ 0.86510445 -0.114638 -0.449291 0.37810251 -0.6144058 -0.11377797]