Quadratic program ================= A quadratic program is an optimization problem with a quadratic objective and affine equality and inequality constraints. A common standard form is the following: .. math:: \begin{array}{ll} \mbox{minimize} & (1/2)x^TPx + q^Tx\\ \mbox{subject to} & Gx \leq h \\ & Ax = b. \end{array} Here :math:`P \in \mathcal{S}^{n}_+`, :math:`q \in \mathcal{R}^n`, :math:`G \in \mathcal{R}^{m \times n}`, :math:`h \in \mathcal{R}^m`, :math:`A \in \mathcal{R}^{p \times n}`, and :math:`b \in \mathcal{R}^p` are problem data and :math:`x \in \mathcal{R}^{n}` is the optimization variable. The inequality constraint :math:`Gx \leq h` is elementwise. A simple example of a quadratic program arises in finance. Suppose we have :math:`n` different stocks, an estimate :math:`r \in \mathcal{R}^n` of the expected return on each stock, and an estimate :math:`\Sigma \in \mathcal{S}^{n}_+` of the covariance of the returns. Then we solve the optimization problem .. math:: \begin{array}{ll} \mbox{minimize} & (1/2)x^T\Sigma x - r^Tx\\ \mbox{subject to} & x \geq 0 \\ & \mathbf{1}^Tx = 1, \end{array} to find a portfolio allocation :math:`x \in \mathcal{R}^n_+` that optimally balances expected return and variance of return. When we solve a quadratic program, in addition to a solution :math:`x^\star`, we obtain a dual solution :math:`\lambda^\star` corresponding to the inequality constraints. A positive entry :math:`\lambda^\star_i` indicates that the constraint :math:`g_i^Tx \leq h_i` holds with equality for :math:`x^\star` and suggests that changing :math:`h_i` would change the optimal value. Example ------- In the following code, we solve a quadratic program with CVXPY. .. code:: python # Import packages. import cvxpy as cp import numpy as np # Generate a random non-trivial quadratic program. m = 15 n = 10 p = 5 np.random.seed(1) P = np.random.randn(n, n) P = P.T @ P q = np.random.randn(n) G = np.random.randn(m, n) h = G @ np.random.randn(n) A = np.random.randn(p, n) b = np.random.randn(p) # Define and solve the CVXPY problem. x = cp.Variable(n) prob = cp.Problem(cp.Minimize((1/2)*cp.quad_form(x, P) + q.T @ x), [G @ x <= h, A @ x == b]) prob.solve() # Print result. print("\nThe optimal value is", prob.value) print("A solution x is") print(x.value) print("A dual solution corresponding to the inequality constraints is") print(prob.constraints[0].dual_value) .. parsed-literal:: The optimal value is 86.89141585569918 A solution x is [-1.68244521 0.29769913 -2.38772183 -2.79986015 1.18270433 -0.20911897 -4.50993526 3.76683701 -0.45770675 -3.78589638] A dual solution corresponding to the inequality constraints is [ 0. 0. 0. 0. 0. 10.45538054 0. 0. 0. 39.67365045 0. 0. 0. 20.79927156 6.54115873]